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GENERAL CONSIDERATIONS ON THE FLOW Ol? COMPRESSIBLE FLUIDS*
,.

By L. Prandtl ,.

Preliminary Remark .

The Royal Academy of Italy has conferred upon me the
honor of opening the theoretical division of this year,ls ‘
Volta Congress by. a lecture which shall serve as an intro-
duction to the’ subject of the’ flow of compressible media.
In view of the limited time available, I shall entirely
omit any description of the historical development of this
“Dranch of the. science and shall also pass over the very
familiar phenomena of hydraulics that receive the usual
one-dimensional “-treatment as, for example, the discharge
from orifices, the Laval nozzle, etc. I shall confine my-
self, rather, to a consideration of the.most important
properties of these flows, from a modern point of view,
starting from the differential equatj.ons of compressible
flow.

1, INTRODUCTORY CONSIDERATIONS

The problem of the motion of fluids which is already
sufficiently involved even” when considered a’s incompressi-
ble, becomes still further complicated and more difficult
when the property of compressibility is taken into account.
In the majority of cases,, therefore, when the compressi-
bility is to %e all’owed for, we are forced to make simpli-
fying assumptions in some other direction. Thus in our
discussion we .s.hallhave to neglect “viscosity and so -as-
sume our fluid to he frictionless and compressible. We
shall further assume that the density of the compressible
fluid depends on the pressure only and such inhomogenei-
ties as, for example, the heatconducted tb the fluid from
the outside or arising from inner combustion, are excluded

4 . ._____________________________________________________________
*ttAllgemeine Ueb”erlegungen ~ber die Str~mung zusammen-

dr{ckbarer l?l~ssigkeiten.lt (Paper on High Speed in
Aviation, read at’ the 5th Volta Congress, at Rome,
September 30 to October 6,,“1’335.) ~eale Accademia
dtItalia, Classe delle Scienze I?isiche, Maternatiche
e Naturali.
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from our discussion. We assume that the relation between
the pressure p and the density p is uniquely deter-
mined,

For this frictionless, homogeneous, compressible flu-
id, just as for the frictionless, homogeneous, incompres-
sible fluid, the law of Lagrange applies~ namely, that a
fluid without initial circulation continues to rn~ve with-
out circulation. It “may be observed that this law holds
true for steady motion only. Where the velocities are
higher than that of sound, the motion begins to’ be un-
steady with the occurrence of irreversible compressions!
leading to an increase in entropy. In this way homogenei-
ty is in general destroyed and the Lagrangian law is no
longer applicable.

Since the state of rest is a special case of irrota-
tional motion, any compressible fluid flow starting from
rest, whether steady or unsteadyi is an irrotational flow’.,
and as such may therefore be represented by a velocity po-
tential whose gradient is the velocity.

v = grad @ (1)

the components being

(la)

For such potential flows of homogeneous frictionless
fluids the Bernoulli equation may be applied:

(2)~Q”-1-~:”+P - u=
at

f(t]

.

In this equation P = J ~~ denotes the pressure func-

tio~ and U the force function; in the case where gravity
is the force ,considered U = - gz; f(t). is an arbitrary
function of time. Another equation to be considered is
the equation of continuity which is an expression of the
constancy of the mass. We may expres”s it either by saying
that a definite element of volume of the same particle of
fluid continues to maintain a constant wass or that the
mass of an element of fixed volume changes with time so

‘lo-more flow’s in than flows out. From either point of J
view we arrive at the equation

qP
~Ei- div (pV) = O (3)

IL J :,,.,.-
>,ruTL.\w@J = “ q: =f(i++~:).~. ——+— ...............,........ ;.—. - .,‘: —..
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where” it is ‘possilble to. put div(p V)=pdiv V+V ●

;,,g,rad,p (where the dot denotes the scalar “product) . Equa-
tions (2)” and (3”), together ”with (l), define .our.pi-oblem.
Except where meteorological applications are considered,
gravity generally plays a subordinate part-in problems
connected with compressible flow, so that it is always
p~ssible to neglect the term containing U. In such,cases
as are considered in -acoustics where the velocities are
small and rapidly c“nanging, the quadratic terms (Va/2 in
equation (2) and V . grad p. in equation (.3)) may be -qeg-
lected. 3Y equation (1) and the re,lation div grad.@ ~ A@
equati,on (3-),may then be written .,

.. .

We now differentiate equation (2) with respect to time
and write

( 3a)

(2a)

The dimensions of dp/dP are those of a velocity . ,
squared and it may therefore be set equal’ to C2 , where
the-velocity c is still a function of p; when the ve-
locity is zero at infinity, f(t) may be set equal to a
constant, The different’iated equation (2) thus becomes

a20 C2 ap––~’+ –- –- = o
at p at

(4)

I?rom the relations (3a) and (4) the equation is further
., reduced to

(5)

which is” the familiar differential equation of sound. A
well-known solution of this differential equation is the ‘
plane sound wave, corresponding to the equation

>. ... . . .. . . .

,
.

@ = F,;,<- ct~

and which travels with va’locity c,’ the form of the wave
being given by the quite arbitrary function F. Another
solution is the-spherical wave whose equation ‘is

A . . —
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0 =. ~f(r-et)
r

(’7)

w-here r denotes the distance from a center. The poten-
tial for the cylindrical wave is less simple. It may le
written

(8)

‘ In all these examples c clearly signifies the veloc-
ity with which the waves travel outward, It is customary
to call this velocity, which we have assumed above as a
function of the density, the velocity of sound. The fact
that in the above equations we have treated it as a con-
stant clearly shows that the solutions are only approxi-
mations for very small sound amplitudes where the density
nowhere differs much from the initial density po. For

finite amplitudes it is necessary to go back to the exact
equations (2) and (3) and we thus arrive at the result
first obtained by Riemann~ that the regions of condensa-
tion move forward at a greater velocity than the regions
of rarefaction and therefore the wave front becomes steep-
er and steeper until an unstable wave is formed which is
known as a “shock wave.” Since in the condensed region
the gas moves forward, ahd moves backward in the rarefied
region, while the impact wave moves with velocities that
do not differ much from the sound velocity, we have the
result that the relative velocity between the shock wave
and the condensed region is smaller, and that between the
impact wave and the rarefied regioil larger, than the sound
velocity.

I

.)

. .

.

11. STEADY POTENTIAL FLOW

The above qualitative discussion will be sufficient
for the case of the unsteady sound motions with small flow
paths. I shall now turn to the main subject of my lecture,
namely, steady potential flow. If we again neglect grav-
ity equations (2) and (3) assume the form

!..$’

and

y
# V2

z +- P (p) = const——
./>........f.-~,’.\..;.divV+: V ● Grad p =0 .

.$

(2b)

(3b)

______________–______________––T,:Tr_-F .––––––--–––-.––––––.—.

‘i .~;.*see reference 1.
/’

../’ -“—
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We may now set

..1- l“dp, .

.,$grad “p = ~ ~-. grad p!-= $ grad P.;
.,

and find- grad P from (2b)... Ifethus obtain!

a
div V - ~~ y ● grad \- =0; (9).

./

Expressed :n rectangular components, u,. v, w, . we may write
v.. grad V/2 as follows:

Equation (9) expressed. in carte sian coordinates thus as-
sumes the form

.-.

$ (L- $-)+%(’-5)+% G- a ./:’””
‘c *K’( 9a)

au——
c2a ( )––+vwy=+wup=”o

‘v ay
-...$

(In this equation use
.% au av. s

was made of the relation 37 ‘ 3=”
derived from the condition of irrotational motion, and the
corresponding relations for the other component s.)

From the form of equation (9) or (9a) it is immedi-
ately evident that in all cases where the velocity compo-
nents are all small in comparison yith the sound velocity,
the relation” reduces to

div V=O
or

–-+ ax”+ cm= o ‘“ ‘“.au
,! ax. ,.3Y a~

When’ the resulting velocity is not vani~hingly small com-
pared to the velocity of sound, but still is smaller than
the latter, then the quantitative relations are changed

....’~ .—–. —. —. —
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..

although the character of, the motion still remains entire-
ly similar to that of incompressible fluids. To see what
equation (9) t“ells us when the flow velocities are of the
order of magnitude of the sound velocity, ‘“wemay so ar-
range the system of coordinates that the X axis coincides
with the direction of flow. Then only the velocity compo-
nent u, ‘in the neighborhood of the origin, will be o.f
the order of magnitude of c, while the velocity compo-
nents v and w- will be small ’compared to c. Equation
(9a) then reduces to

(lo)

If we pow assume that u increases in the direction
of the flow corresponding to a fall in pressure in that
direction, then au/ax is positive. From equation (10),

av–. + m.therefore,
ay az

is negative when U2 “2< c. and posi-

1 tive when u 2>C2 and becomes zero for U2 = C2 . Ex-

pressed in words, this “means that the floti converges with
i~r–ea”s-ing velocity when the “velocity is less than that
o-f‘s-o-iZnd--bu~-’”dV”e”r@s”s”‘tih-enthe -v-eloclty’is greater than—...
that of sound, an{ rnoreove”r”~-t-hat ‘tihenthe velocity pass-
es through the sound velocity the streamlines are paral-
lel”. This conclusion fully agrees with what is found for
the flow through a Laval nozzle from elementary considera-
tions. In that case, too, it is found that when the pres-
sure falls throughout the length of the nozzle the veloc-
ity in the converging part of the nozzle is smaller than
the sound velocity and,:;in,,:t~hedivergin~ part is greater.
The sound velocity is ~ just where the cross sec-
tion of the nozzle is a minimum.

Equation (10), however, tells us more. If we intro-
duce” the relation given by equation (l), we obtain

(lOa)
(. ----- -.._—— .—— —— -

-.,

If we consider the immediate neighborh-o>~ of some clef-
inite point, it is sufficient to set <i “equal to its mean
value in the region under consideratio~> Using this sim-
plification, there is obtained a very well-known partial
differential equation. This is of the elliptic type for
the case where the expression 1 - u’2/c2 is positive;

..

k- ——.
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that is, it is entirely related to the differential _
,fgr incompressible flow\ When. 1 - u=/c2 is negative,
however,” which is ‘true when” thevelocity -u is-greater..
than the souxulvelo,city, then the elliptic type goes over
into the hyperbolic type.. It is known, however, that,the
solutions o,f the elliptic” type are regular within the re-
gion, wherdas those of’the hyperbolic type also admit of
discontinuous solutions within the region, running through
the range of th”e so-called characteristics of the differ-”
ential equation. What is typical of both cases may %e
seen from the following consideration, w,hich starts out
from the well-known singularity in a flow source of an in-
compressible fluid

\ (a =:-&”.=

r /-3’+ +Z2 )————————————\i
Let us inquire what is the form of the potential of

such .a source when the flow from the source has a constant
velocity of the order of magnitude o“f the velocity. of sound
superimposed upon it. The problem may be simplified by
assuming that the velocities from the source are small,
thus making equatio’n (10) or (lOa) applicable. To find
the singularity for this ‘c’asewe may apply a relative sys-
tem in which the undisturbed medium is at rest and the
source moves with the constant velocity -U. ● we may first
assume an IIexplosion wave” (kna~lwelle) of spherical shape
expanding in all directions, the potential of which is ob-
tained by assuming in equation (7) a function f, which
is different from zero only within a very short interval
and vanishes outside this interval. This is the case when
a small volume sudd,enly begins to increase and then main-
tains its new magnitude’. It may then be assumed that a
continuous series of such short expansions proceeds in
such a manner that the center of t“he expansion travels
,forward ~i$h the velocity -Uo. S’inCe we are here consid-
ering so,tindwave expansions obeying the differential equa-
tio-n (5,), the potential for the whole process may, on ac-
count &f the linearity of the differential equa,tion, be d
built up by the superpositi-on ‘Of the potentials of the in-
dividual waves. When the expatision has continued long
enough and the center of the expansion is momentarily at.r-%-,.-a...~;.. ..*.
the orlgln of cbo”r”d<fii”~t.e,g,th’e~-co~utmtio-n- leads tothe
following formula:

‘A,
@ = –––––––––L–___L__– :

- ——————————- —-——...———__——— (11)
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When U. is smaller. than the sound velocity C, then
the surfaces of constantp6tential instead of leing spher-”
ical as is the case for incompressible fluids, are flat-
tened ellipsoids of- revolution. The more “closely the ve- ~“
locity .Uo approaches the velocity of sound the more ‘

strongly flattened the ellipsoids become. When U. ex-”
ceeds the’ velocity of sound, however, then the solution
is different from zero only within a cone of angle a,
which is determined by

tan a = * _l_____ ‘—————————-

/

U02 .’
——— - 1
C2

or sin u:= + –c– ..
Uo (12)

The same result is also obtained when the momentary
position of the individual waves is investigated (fig. 1).
The angle a is known as the Mach angle. (It may here be
remarked, that when u. < c the waves fill space in all

directions, whereas for the case U(-J> c, they fill only

the cone of fig. 1.) U. > c, the constant potentialFor

surfaces a“re hyperboloids of two sheets having the given
cone as asymptotic s~rface. Only one of these sheets has
physical reality, as is easily seen from our description
of’ the formation of the source potential from the explo-
sion waves. Where still another potential is to b~ built
up %y” the ‘superposition of such sources, it is to be ob-
served that ‘everywhere outside the given cone, the poten-
tial of the, individual sources is to le set equal to zero
and takes on the values of formula (11) only within the
cone.

111. ~LoRrs WITH l~SUBSONICIJVELOCITIES - LINEAR TEEORy

Formula (11) enalles us to obtain a general relation
for the solution of t“he differential equation (lOa) and
this we shall discuss further on. For ‘Isubsonicll veloci-
ties it is possible to relate every solution of this dif-
ferential equation to a solution of- the differential equa-
tion for constant volume potential flow :

I
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~
if we write

,,,
f“t=x; q=y I. ”>:; f

~ = . . .,1.- ‘>:

and assign the same potentials to the corresponding points
of each space (reference 2) . The assumption must naturally
he made, as for differential equatioii (lOa), that the ve-
locities derived from the potential are small compared
with the basic velocity Uo . The application cannot there-
fore be made to flows in which a stagnation point occurs,
since in this case the deviation from U,o is just as
large as u. itself. It is permissibl~”, however, to ap-

~

ply the equation to flow stout very narrow shapes having a
sharp entrance edge. Given the potential flow @o for an

incompressible fluid, the question next arises as to what
is the form of the contour that corresponds by the above
rules to the potential of the compressible fluid. The

dy v
slope z;=;

may, to a sufficient approximation, be put

1 equal to

i!j Correspondingly, .\

dy d~

/

U. 2
_.-—

ii; ‘ ii~l-c2

/
j;

II
We then obtain the result that the entire contour must be

i$
made thinner than that corresponding to the incompressi-

[

~j
ble fluid with e~ual potential values approximately in the

k,
ratio* m? and similarly the angle of attack must
——-——————______ ____________ ._________________———__ __________

*It may be pointed out that the points on, the contour do
not correspond to the above transformation equations for
the p,o~e.ntial,.yhich require an increase in the y ordi-
nates for points o’f equal pote”ifti~l. Tire abo-ve.conclu-
sioh-s are nevertheless applicable since the difference in
the flow direction for points”lying near each other differ
only by a second degree order from the result given above
on account of t’he slenderness of the contour under consid-
eration.



10 N. A. C,.A’, Technical MemorandumNo. 805

.

be made smaller ,in the same ratio. *

We must still consider the pressure distribution on
the surface. This is determined according to the Ber-

au
noulli equation 3Y the tern Pu ~~ for which we may put.,

a“@
puo ;;5 ● Since we had set ! = x and @ was to have

the same value at corresponding points, this magnitude re-
mains constant in the transformation, and the same holds
true for the pressures themselves. The tendency toward
flow separation may therefore -also be expected to be the
same for loth. cases. The conclusion follows that in or-
der to avoid separation of flow it is necessary to make
the profiles of the airfoils, etc., flatter and the angles
of attack must he made correspondingly smaller, as the ve-
locity u. approaches the velocity of saund. The maxi-

mum lifts attainable according to this approximate theory
will be the same as those that may be expected for the in-
compressible flow. Actually, it is formd’that on approach-
ing the velocity of sound, the relations are considerably
less favora%le than indicated by this approximate theory.
The chief reason for this is the fact that the superim-
posed velocities are not actually small compared to the
basic velocity U. and consequently it is possible for
points on the suction side to exist at which the velocity
of sound is either reached or exceeded, so that considera-
ble deviations from our computations are to be expected.

.

It may still be asked how the fact is to be explained
that as the velocity of sound is approached, the same lift
is obtained with a less cambered profile and at a smaller
angle of attack. The explanation lies in the fact that ,.
——.- -——.————_——————————____———.-—.———_———————————--—_——————_

*It is also possible to coordinate the points in ‘such a
manner that the potentials Q in the xyz space will be a
multiple of the potentials at the corresponding points of

1

———_..

the tq~ space.
U02

If the multiple chosen is l/ 1 - ;z–

then du = $, that is,
z;

the profiles and angles of attack

will now agree. The differences in pressure (see below)

[

.,—— —

will now be raised in the ratio l/w 1 - :$:. and the

tendency to separation will’ therefore be increased.



IT.A. C.A. Technical” Memorandum No. 805 11

according to the transformation given a%ove, the potential
field and therefore also the velocity field in the direc-
tion at right angles to “the-’basic-velocity” extends further

r

‘T
in the ratio 1/ 1 “- ;;- and so the vertical velocities,

~,.,,ib(f.r .’ ,.-

[

U02
which are smaller’~in the ratio I - ~– .“produce “in this

extended region a total impulse of the same magnitude as
would be the case for incompre”ssib’le’flow.

I?or basic velocities above that of sound this analogy
cannot naturally be applied, since the transformation for-
mula (13) would in this case give an imaginary result.
Here other methods must be used. (See sections 5 and 6.)

IV. FLOWS WITH SUBSONIC VELOCITIES - HIGHER APPROXIMATIONS

If it is desired to obtain a better agreement with
fact than is afforded by the linear theory, it is possible,
starting either from the theory of potential flow for in-
compressible fluids or from the solu’tioas of the differen-
tial equation (lOa), by a step-by-step process to obtain
closer approximations resulting from the application of
the exact equation (9a). Computations of the first kind
were carried out by many investigators (references 3 and 4)
but , to the best of my knowledge, no computations of the
second kind.* In practice these computations are rather
laborious and do not agree very well with each other. It
is therefore a noteworthy fact that it is also possible to
find good approximations on the basis of electrical anal-
ogy, whereby a good approximate solution may be obtained -
only for the case, however, where the velocity of sound is
,not attained at any point of the region considered. Since
this method has been worked out by Professor G; I. Taylor
(reference 7) , who will give a more detailed repo”rt on it
at this session, I shall not touch on this subject any
further.

T“hrough three short notes by Riabo-ach’insky (reference
8)..and Demtchenko (references 9 and 10) , in the Comptes
——————_———————————— _______________ ________________________.—————
*G, Braun (reference 6) has obtained solutions in “the
neighborhood of the sound, velocity by applying a variation
principle of Bateman (reference 5).

—. —
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Rendus of the I?ar.isAcademy, 1932, and old work by
Tchaplygin (reference 11) written in,the Russian language
in 1904 became known, wherein it was shown that for the
case of two-dimensional flow, the problem may, by trans-
formation to new coordinates (rectangular or polar), be
presented in such a form that a potential flow between two
plates at a predetermined variable distance apart, may be
represented by an electric flow in an electrolyte of vari-
able depth. One coordinate x will be a function of the
ratio of the local velocity to the maximum (which may nat-
urally also be written as a function of the ratio of the
density to the maximum density); the other coordinate F
is the direction angle of the velocity of the” flow, the
variable distance between the two plates being a function
of the first coordinate only. Since it is possible to
compute mathematically the solutions for such regions

“whose boundaries are determined by the lines X = constant
and 9.= constant, it -becomes possible to solve those
problems of tho Helmholtz-Z irchhoff type where flat walls
(direction 6 = constant) and free boundaries (constant
velocity, therefore X = constant) are considered for the
case where compressibility is taken into account. For one
particular condition which, though not occurring in na-
ture , may be applied approximately when the difference in
density is moderate, the problem may even le formulated
as a usual type of potential flow in the coordinates x
and 0, Demtchenlco (reference 10) showed among other
things that for the Ifirchhoff flow against a flat plate,
when the velocity of the flow is half that of souild, the
resistance is about 7 percent higher than the Kirchhoff
resistance,

v. FLOW WITH SUPERSONIC VELOCITY - LINEAR THEORY - I’LOW

AROUND A CORNER

I s-hall now consider the flows for which the velocity
is greater than the velocity of sound (the so-called llsu-
personic velocity’f). We may liere again start out from
formula (10) or (lOa). If a two-dimensional flow is con-
sidered, then equation (lOa) now reads as follows:

(lOb)

The general solution of this linear differential
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j

I[ equation may immediately be set down. It is

1!’ O= Fl(y- x tan a) + & (y -t..x tan a) (14)
II

I
where again

(
t.n.=1/= = : (15)

so that
)_

sinct=’:-’~t’
U.

According to the reasoning that led from equation (9a)
to equation (10), equation (14) is the solution for the
neighborhood of a point, when the X axis is chosen to lie
in the direction of the flow. The functions Fl and Fa, .

are subject to the limitation only that the magnitudes ap-
pearing in the differential equation (SOb) exist; otherwise
they may be taken quite arbitrarily. When the functions
F1 and Ta are taken to represent a wave form, then equa-

tion (14) represents tile superposition of two wave trains,
crossing each other at the angle &a with respect to the
mean direction of flow. For a more general solution, the
wave trains are such that for each positio,n represented by
equation (15), U. corresponds to the local mean veloc-

ity at that point. Since such waves may be photographed
(see fig. 2) , it is possible by mdasuring the angle 2a
between the two crossing wave trains to obtain the ratio
c/u. ● (It should be noted that c is not the constant

sound velocity of the gas at rest but the variable sound
velocity of the adiabatically cooled gas.) The direction
of the flow bisects t’he angle.

Let us now consider the following ,special case of
flow. In equation (14) let I?a = 0; I’l = O for positive
values of the argument y - x tan a; for negative values
let FI =A (y- xtan a). In the neighborhood of zero
it is possible to pass to the limit ““zero by means of a
transition arc, or the radius of curvature of the transi-
tion arc may be used. The above formula corresponds to
the limiting value. To obtain the total potential, the
potential of the straight streamlines U.o.)=!x, .mu.stbe. _
added. In the region x > y cot a the components of the
velocity then become

—.,,
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(16) ‘

In our example, therefore, the flow is parallel in
frbnt of the “ooundary line y = tan a and is in the direc-
tion of the X axis. Behind the boundary line it is also
rectilinear but makes an angle’
(see figs. 3 and 4)

p to

tan~=~=
A——————.— —

Uo - X tan a

the X axis given by

. __?_
Uo (17)

If the density and pressure upstream from the %oundary
y= xtan:a are denoted by Po and po 9 respectively,

and the pressure below the boundary by p, then approxi-
mately

,. P“- Po = - PO Uo . (u- Uo)

(18)
s P. U. X tan ~

Along the boundary y = x tan a, therefore, there is a
pressure jump (which may ,be converted into a steady pres-
sure rise by introducing the transition curves mentioned
above in the function r~). The fluid particles are accel-
erated in the direction of the pressure rise, that is, nor-
mal to the boundary line J(=,~ tan a. This result may
also be obtained directly from equation (16), from which
the direction of the velocity vector is obtained, as fol-
lows:

tan al = v
1—————— = - ————

u- U. tan a

Positive values of A and ~ correspond to a conden-
sat ion; negative values to a rarefaction. It should be
stressed, nowever, that the above computation is derived
from the approximated linear differential equation (lOa)
and is therefore valid for small pressure differences and
small angles of deviation only. ?

What may be expected for larger deviations may clearly
be seen if we take two pressure jumps of the same sign at a
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‘shokt distance from each other and see what we get from
equations (16) to (18). The result is obtained that for
the case of a ‘pressure rise the -two pressure jumps co,n-
verge; for a pressure drop they diverge. Not only is the
direction of flow in the second field rotated by the an-
gle ~ with respect to the first, but:the velocity behind
the first pressure wave is “smaller and therefore the Mach
angle a,2 is larger than al. For a rarefaction wave, on

the contrary, the velocity behind the first wave is larger
aild.therefore the Mach angle smaller. The two”wave” fronts
converge or diverge accordingly’ by the amount f3+ck-cLl.

The” transition from the” type of flow just considered
to that of a continuously curved flow may now’ easily be
effected 3Y replacing the first streamline (given wall
along which the flow takes “place) %y a polygo-n of very many
sides. From each edge of the polygon, i{aves start out ex-
panding and diverging in case of a convex wall and con-
tracting and converging in case of “a-concave wall. In
this latter case it is also possible t~hat’the waves meet
each other completely. The compression may t“hen assume an
unsteady finite value (the so-calle”d “compression shock”).
This beha,vior of compression and condensation waves start-
ing out from a curved wall is entirely analogous to the re-
sult already mentioned obtained by Riernann far plane waves
of finite amplitude.

!

We see, moreover, from the result of a transition to
a boundary of radius of curvature zero, that for a wall
which forms a convex side inclined at an angle -~ (see
fig. 6) , the flow remains unchanged up to a surface form-
ing an angle al with the direction of flow, then expands
within an angle -p+ct, -a, maintaining the pressure

and velocity constant along each ray; then in the direc-
tion -~ again passes over into parallel flow with con-
stant velocity. The quantitative relations for a flow ~f

this type for a gas that obeys the law P=PO “ (P/po)

were given in the G~ttingen dis~ertation of Th. Meyer in
1908.* In case of a concave edge there is a compression
shock which lies between the angles al and ~ + a,. In

front of and behin’d the condensation shock the flow shows....,,
constant “velocity arid-c’o-n-stamtprewure. . .. . . ,.
.-_______T ------------------------------------------------------------
*See reference 12.

,.
.

.—
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APPROXIMATE METHOD FOR GENERAL

SUPERSONIC l?LOl?

TWO-DIMENSIONAL

shall now turn to the case where the flow is af-
not only by a single wall but also by an omnositel~

lying wall. In this case the.waves pass through ~~ch oth~
er from opposite sides and also deviate from their origi-
nal direction. The relations are most clearly brought out
.by the following procedure.

In the same manner as, for.the purpose of certain
approximate calculations, a curve is replaced by a series
of straight-line steps or a polygon, it is possible to re-
place the continuous deviation of the velocity direction
in a supersonic flow by a series of sudden deviations, of
the kind shown in figures 3 and 4. If the angle ~ of
these deviations is chosen to be of the same size in all
cases, for example 2°, then only such directions occur
which di,ffer by an integral multiple of ~; that is, in
our example, of 2°. If we start from a definite super-
sonic velocity, then on the basis of the Meyer formula,
only certain discrete values of the velocity may occur.
In order to obtain a better idea of these velocities and
directions, the method suggests itself of drawing all the .*

possible velocity vectors of the system at each point. If
in this figure we trace those conditions corresponding to
the case we have just considered, namely, where waves are
assumed to start out from one wall, then all the points
in the. velocity picture corresponding to that state lie on
a single curve (the thick curve of fig. 7) . The entire
system of velocity vectors for the case where waves travel
into the region under consideration from both sides is
then evidently obtained by drawing curves of the same sort
through all points lying 4° apart on a circle

(w = ./F+ v~).

w = constant

All the intersection points so obtained
then represent the end points of the velocity vectors possi-
ble in this system.

According to a relation shown in a previous section,
the directionof the vector difference of the velocity, in
front of and behind a wave, is perpendicular to the wave
front . This relation enables us to construct graphically
the entire flow picture for any flow when the magnitude
and direction of the velocity at the entrance section, and
either the pressure or direction of flow at the side edges,
are given beforehand. Por the permanent gases-the curves.-—-_...__... .
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of figure ‘7are epicycloid and it, is possible to construct
the curves easily on the drafting board by using a rotata-
“B1’e”ellipse to draw the direct.ions...norml.l to the curve tan-
gents, -as Busemann has shown,.

,-

In order to maintain constant the flow direction along
the wall, for the case of a straight wall, or maintain the-
velocity constant in the case where a constant pressure is
given, in accordance with Bernoullils law, it, is necessary
to reflect the expansion and compression waves that reach
the boundary. As may easily be seen from figure 7, at a
straight wall condensations are reflected as condensations
and rarefactions as rarefacti,ons; at a free jet boundary,
however, condensations are ‘reflected as ra.refactions and
rarefactions as condensations. For curved walls, the
walls are replaced by a polygon of angle @ and waves
start out from each corner.

In order to obtain a clear construction it is advisa-
ble to number each epicycloid, one set with numbers increas-
ing in clockwise order, the other set decreasing in clock-
wise order. It may then easily be seen that the difference
of these sets of numbers is a measure of the angle of the
flow direction, w-bile the sum is constant on a radius; in
other words a function of the velocity. It may also be re-
marked in this connection that, as in the treatment of the
subsonic velocity by Tschapligin, the angle of the flow dir-
ection and a function of the velocity again appear as de-
ciding factors.

It is possible by a contact transformation to trans-
form equation (9a) so that u, v, and w become the inde-
pendent variables; and in the case of two-dimensional flow
in the pla-ne of .U and v, it is possible to pass over to
polar coordinates and so introduce the radius and the an-
gle as new independent variables. As the form of equation
(9a) already shows, the contact transformation offers the
advantage t-hat the differential equation becomes linear in
the dependent variables, since the expressions 1 - u2/c2 ,
etc. , are now functions of the coordinates. By a stiitable
stretching of the radii - that is, by introducing a func-
tion of the radius instead of the radius - it is possible
to simplify still further the differential equation as was
done by ‘Tschapligin. ‘“When the relatio.n,~bet~r.een the waves
in the field of flow and the corresponding velocity f-ield
are somewhat more closely analyzed, it is found that to
each field of flow limited by two waves in ;the one system
and two waves of the other system there corresponds a point
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in the veloc,ity field (since according to the assumption
made the velocity is to be constant in each such field).
Conversely, to a point of intersection of two waves in the
field of flow there corresponds a quadrilateral in the ve-
locity field, since at the point of intersection four
fields of different velocities meet. Both of these fig-
ures are therefore the reciprocals of each other, just
like a truss diagram and its reciprocal force diagram.
The similarity goes even further. Just as a truss togeth~r
with its force plane may be represented by the Airy stress
surface, so in this case there exists a corresponding
function, namely, the function Ux + Vy - @ obtained from
the potential @ by the contact transformation. _- -’

!Che grap~ic method here ‘descril)ed, to which there nat-
urally corresponds an analytical method derived on the same
basis, offers a very convenient means of discussing all two-
dimensional supersonic flows. Applications of this method
have been made to the discharge from nozzles, the flow.
about streamlined bodies, airfoils, etc. See A. Busemann
(“reference 13) or the examples given in his article in the
Handbuch der Ilxperimentalphysik (reference ,14). For rota-
tional symmetric flows there are no such simple methods.
The analogous cases to the flow around a corner, the flow
at the tip of a cone of finite angle, have been solved
graphically b~ Busemann (reference 15) and analytically by
G. I. Taylor and J. W. Uaccoll (reference 16) . Solutions
for the general case of supersonic flow about a body of
rotation have been given at least %y approximate linear-
ized methods by Th. v. K&rm&n and N. B. Moore (reference
17), which methods are chiefly applicable to very slender
bodies.

VII. PASSAGE THROUGH THE VELOCITY OF SOUND

The methods described in sections 3 and 4 for the
flow with subsonic velocity approach one another only
provided the velocity of sound is nowhere reached. The
methods discussed in sections 5 and 6 for supersonic ve-
locities are similarly applicable only when the velocity
is everywhere greater than the sound velocity”. Neither
of these two methods therefore provides any information
about the manner in which passage through the velocity of
sound takes place. There are, however, solutions for
such cases that have been obtained some time ago. The
first one, given by T. Meyer (reference 12) , was obtained
by a Tower series development in the coordinates x and y
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of a point lying on the curve u = c. It turned out that
the flow potential could be developed at such a point and
tests show’e”d’“good-agreement with- the .co,mputationsP An-
other example” was given by G, I, Taylor (reference ’18)-~”””
This is the curved line flow in a usual potential vbrtex,
where the velocities are exactly as large as the velocities
in the potential vortex of an incompressible fluid. Both
of these examples, the one with a straight mean streamline
and an increasing ~elocity in the direction of flow, the
other with curved streamlined and a constant velocity along
each streamline, allow us to conclude” that in’going from
subsonic to supersonic velocities a continuous passage
through the sound velocity may be expected. It is to he
noted, however, that iil the supersonic velocity region it
is’very easy for conditions to be set up such that a se-
ries of infinitesimal’ condensation waves combine to form a
condensation shock of finite magnitude. In the passage
from large velocities to smaller such condensation shocks
occur almost regularly. In this connection it should also
be mentioned that, in contradistinction to potential flows
with subsonic velocities, which are symmetrical forward and
aft about bodies that are themselves symmetrical at both
ends, a potential flow with supersonic velocities is proba-
bly never symmetrical because the condensation and rarefac-
tion waves starting out from the walls of the body always
travel obliquely toward the rear and never forward. Per-
haps it is still possi-ble by taking this lack of symmetry
into account , to solve analytically more of those cases of
flow where passage from sulsonic to supersonic velocities
occur, especially when the supersonic region is limited in
extent, as may be expected, for example, in the flow about
cylinders, etc.

From the analytical standpoint, for steady friction-
less flow, it is possible by reversing the velocities of
one solution to obtain another solution. In applying this
method to a“ symmetrical bbdy or channel with nonsymmetrical
flow forward and aft, we thus obtain by reflection a sec-
ond solution different from. the first and with the same
flow direction. The passage from the single valued sym-
metrical solution for the subsonic velocities to the .two-
valued solution indicates the existence of a special kind
of lranchin,g position. This may perhaps be the reason f’or
the fact that the analytical met-hods that have been,.used up
to the present have ceased to converge. By the application
of the direct methods of the calculus of variations, G,
Braun (reference 6) was able to obtain’ solutions for the
branching positioils, which solutions, however, should be
applicable to infinitely small deviations only.

.: —
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Here I should like to say a little more about ..the com-
pression ,shocks. The”points in front of and.lehind the ~
shock do’ not lie on an ‘adiabatic, but rather there is an..
increa,se in entropy due to the irreversible process. The
magnitude that remains constant throughout the condensa-
tion shock is the total energy = kinetic energy + heat
content; per unit mass = Tv2/2 + I (the heat content I =
U + pV ,’is also called tile enthalpy). In the general case
the direction of flow forms an angle ,with the normal to
the “impact surface. These relations ,assume their simplest
form for the two-dimensional compression shock. If the
normal to the impact plane is taken as the X axis and the
direction of flow is in the XY plane, the following equa-
tions result:

PI U1”=P2U2 ..~”*.....” (continuity)

PI + pl U12 =P2+P2U 22”..-.. fimPulse i~the x
direction)

VI =V2 : . . . . . . . . . . . . . ( impulse in the Y
direction)

~ (u12+v12 ) + II = ~ (U22+V22 ) + 12. ,(energy)

(Tile index 1 for the condition %efore the impact, index 2
for the condition after the impact.)

The computations for t“his problem, using the equa-
tions of ,stqte for ideal gases as a basis, were carried out
by Th. Meyer (reference 12) after Hugoniot (reference 19),
a“nd independently Stodola (reference 20) had previously
explained the behavior of t’he normal compression shock.
The relations are clearly brought out .in a diagram given
by Busemann (“reference 21). In the velocity-field picture
he draws for each given initial velocity,, the “impact po-
lar,ll namely, the geometrical locus of all the velocity
vectors for the state after the impact and thus obtains
curves like those of figure 8, where ~ denotes as before
the deviation angle of the flow, y the angle between the
impact plane and the direction of flow. The smallest val-
ue of ‘y is obtained for shocks with small velo’city ‘differ-
ence and naturally agrees with the Mach angle ct. The
largest difference in velocity is obtained iil normal im-
pact . The velocity behind the normal impact is always
smaller than that of so’{znd. The increase in entropy prac-
tically denotes a lo~rering in the pressure compared’ to
that which would follow from the Bernoulli equation,. Thins

.
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difference in pressure is only insignificant , however, when
t’he difference in velocity in front of and behind the shock
Zs not too’ great. Th.eprocess- inany case involves, a loss
in energy.

VIII. APPLICATION TO AIRFOILS

Before concluding we shall make a few observations on
the application of the foregoing discussion to airfoils.
As far as subsonic velocities are concerned, it may be
pointed out that in the neighborhood of the wing tip consid-
erable supersonic velocities are set up which for high
lift coefficients attain double the values of the flight
veloctty. It may therefore be expected that at speeds of
170 m/s (380 miles/hr.) the velocity of sound may already
be attained locally. This may explain the fact’ that in
the region of 200 m/s (450 iniles/hr.) there is already a
notable decrease in the lift coefficient.

As regards the induced velocity, it should be pointed
out that it is possible to ol)tain the wing lift as well a.s
the induced drag from the trailing vortices behind the
wing. The velocities in these vortices are, however, in
each case small compared to the velocity of sound, so that
the usual laws for incompressible flow may be applied with-
out objection for the computation of the lift and induced
drag. In computing the lift distribution of a wing of
given form, however, it is necessary to take into account
the fact that due to the compressibility, the value of

dca
f

———
U2

———

da
is increased in t-he ratio 1 : l-;~ (as far as

the approximate formula remains applicable) .

For the profile characteristics at supersonic veloci-
ties, an approximate formula may be derived from the appli-
cation of the consideraticms of section 5. If we consider
a flat plate that is inclined by the an&le f3 to the di-
rection of flow (fig. 9) (Ackeret reference 22), then on
the pressure side the relations of figure 3 hold and there
results therefore a pressure rise of an amount that is
easily computed from formulas (17) and (18). On the suct-
ion”” side there, is a corresponding lowering in pressure.
as required by the above-mentionod formulas for a negative
,angle. We thus obtain the lift coefficient

— —

(19)
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It is a noteworthy fact that the suction force, which
exists in’ the case of subsonic velocities at the forward
edge, is entirely nissing’”in a flow of this type and there-
fore the resulting force is here ilot perpendicular to the
direction of flow, but normal to “the surface, so that even
for a frictionless fluid the lift-drag ratio ”become”s

(20)

It may be seen that for a given value of Ca this ratio

is favora%le just above the velocity of souild, but with in-
creasing velocity, becomes considerably less favorable. (At
very large speeds the lift coefficients will likewise be
very srdall.) These increased drags shove the velocity of
sound }ear a connection with the waves t-nat travel out~ard
from t:le moving object. Buscmann (reference 23) was able
to show that this .mave energy was converted into heat part-
ly near the wing and partly at a great distance away.

As far as the induced drag is concerned, it follows
different laws at speeds above the velocity of sound from
those below the velocity of sound. For an unwarped rec-
tangular airfoil the induced drag is all included in the
triangular regions at each end that are limited by the
Mach angle (cross-hatched areas in fig. 10). It is, more-
over, not clearly separable from the wave resistance which
according to the above is also proportional to ca2 and

therefore does not have the same independent significance
as the case of subsonic velocities. According to a remark
of Busemann, the induced drag disappears entirely when the
two triangular parts lyiqg in the region of disturbance
are removed.

Translation by S. Zeiss,
National Advisory Committee
for Aeronautics.
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